首页
iYoRoy DN42 Network
关于
友情链接
Language
简体中文
English
Search
1
Docker下中心化部署EasyTier
1,738 阅读
2
给Android 4.9内核添加KernelSU支持
1,100 阅读
3
记一次为Android 4.9内核的ROM启用erofs支持
309 阅读
4
在TrueNAS上使用Docker安装1Panel
302 阅读
5
2025羊城杯初赛WriteUp
295 阅读
Android
运维
NAS
开发
网络技术
专题向研究
DN42
个人ISP
CTF
登录
Search
标签搜索
网络技术
BGP
Linux
BIRD
DN42
C&C++
Android
OSPF
MSVC
AOSP
Windows
Docker
caf/clo
TrueNAS
内部路由协议
服务
iBGP
Clearnet
DNS
STL
神楽悠笙
累计撰写
23
篇文章
累计收到
11
条评论
首页
栏目
Android
运维
NAS
开发
网络技术
专题向研究
DN42
个人ISP
CTF
页面
iYoRoy DN42 Network
关于
友情链接
Language
简体中文
English
搜索到
6
篇与
的结果
DN42&OneManISP - 共存环境下的OSPF源地址故障排除
前情提要 正如这个系列的上文所说,因为VRF方案太过于隔离,导致我部署在HKG节点(172.20.234.225)的DNS服务无法被DN42网络所访问,查阅资料得知可以通过设置veth或者NAT地址转发的方式来实现,但是因为现有的资料比较少,最终还是放弃了VRF这个方案。 结构分析 这次我打算将DN42和公网BGP的路由都放入系统的主路由表,然后再分开导出,通过过滤器来区分是否应该导出。同时,为了更加直观,我将DN42部分的配置和公网(以下简称inet)部分的配置分别单独存放,再由主配置文件引入。同时,因为kernel部分配置一个路由表只应该存在一个,因此合并DN42和inet的kernel部分,仅保留一个。 经过多次优化和修改,我最终的目录结构如下: /etc/bird/ ├─envvars ├─bird.conf: Bird主配置文件,负责定义基本信息(ASN、IP等),引入下面的子配置 ├─kernel.conf: 内核配置,负责将路由导入系统路由表 ├─dn42 | ├─defs.conf: DN42的函数定义,如is_self_dn42_net()这类 | ├─ibgp.conf: DN42 iBGP模板 | ├─rpki.conf: DN42 RPKI路由验证 | ├─ospf.conf: DN42 OSPF内网 | ├─static.conf: DN42静态路由 | ├─ebgp.conf: DN42 Peer模板 | ├─ibgp | | └<ibgp configs>: DN42 iBGP各个节点的配置 | ├─ospf | | └backbone.conf: OSPF区域 | ├─peers | | └<ibgp configs>: DN42 Peer各个节点的配置 ├─inet | ├─peer.conf: 公网Peer | ├─ixp.conf: 公网IXP接入 | ├─defs.conf: 公网部分的函数定义,如is_self_inet_v6() | ├─upstream.conf: 公网上游 | └static.conf: 公网静态路由 将定义函数的部分单独拿出来是因为我需要在kernel.conf的过滤器中引用,因此单独拿出来以便于提前include。 完成后分别填入对应配置,然后由写好include关系,birdc configure后发现也成功跑起来了。于是乎告一段落...吗? 发现问题 运行一段时间后,我突然发现通过我的内网设备Ping HKG节点无法Ping通,通过HKG节点Ping我的其他内部节点也无法Ping通。奇怪的是,外部AS可以通过我的HKG节点Ping到我的其他节点或者其他外部AS,我的内部节点也可以通过HKG节点Ping到其他不直接相连的节点(如:226(NKG)->225(HKG)->229(LAX))。 通过ip route get <内网其他节点地址>发现: root@iYoRoyNetworkHKG:/etc/bird# ip route get 172.20.234.226 172.20.234.226 via 172.20.234.226 dev dn42_nkg src 23.149.120.51 uid 0 cache 看出问题了吗?src地址本来应该是HKG节点自己的DN42地址(OSPF部分stub网卡配置的),但是这里显示的却是HKG节点的公网地址。 尝试通过birdc s r for 172.20.234.226读取bird学习到的路由: root@iYoRoyNetworkHKGBGP:/etc/bird/dn42/ospf# birdc s r for 172.20.234.226 BIRD 2.17.1 ready. Table master4: 172.20.234.226/32 unicast [dn42_ospf_iyoroynet_v4 00:30:29.307] * I (150/50) [172.20.234.226] via 172.20.234.226 on dn42_nkg onlink 看起来貌似一切正常...? 理论上来说,虽然DN42的源IP和正常的不太一样,但是DN42在导出到内核的时候改写了krt_prefsrc来告诉内核正确的源地址,理论上不应该出现这样的问题: protocol kernel kernel_v4{ ipv4 { import none; export filter { if source = RTS_STATIC then reject; + if is_valid_dn42_network() then krt_prefsrc = DN42_OWNIP; accept; }; }; } protocol kernel kernel_v6 { ipv6 { import none; export filter { if source = RTS_STATIC then reject; + if is_valid_dn42_network_v6() then krt_prefsrc = DN42_OWNIPv6; accept; }; }; } 在这里卡了好久的说 解决方案 最终,某次无意间尝试给OSPF的导出配置中也加上了krt_prefsrc改写: protocol ospf v3 dn42_ospf_iyoroynet_v4 { router id DN42_OWNIP; ipv4 { - import where is_self_dn42_net() && source != RTS_BGP; + import filter { + if is_self_dn42_net() && source != RTS_BGP then { + krt_prefsrc=DN42_OWNIP; + accept; + } + reject; + }; export where is_self_dn42_net() && source != RTS_BGP; }; include "ospf/*"; }; protocol ospf v3 dn42_ospf_iyoroynet_v6 { router id DN42_OWNIP; ipv6 { - import where is_self_dn42_net_v6() && source != RTS_BGP; + import filter { + if is_self_dn42_net_v6() && source != RTS_BGP then { + krt_prefsrc=DN42_OWNIPv6; + accept; + } + reject; + }; export where is_self_dn42_net_v6() && source != RTS_BGP; }; include "ospf/*"; }; 之后再运行发现src地址正确了,互相Ping也都能通。 配置文件可参考:KaguraiYoRoy/Bird2-Configuration
2025年10月29日
11 阅读
0 评论
0 点赞
DN42&OneManISP - 使用VRF实现公网BGP和DN42共用一台机器
背景 目前同一区域内公网BGP和DN42分别用了一台VPS,也就是说同一个区域需要两台机器。从群友那里得知了VRF,便想着通过VRF实现同一台机器同时处理公网BGP并加入DN42。 注意:VRF方案因为其隔离性,会导致DN42无法访问主机的服务。如果你需要在服务器上跑诸如DNS之类的服务给DN42用,你可能需要再单独配置端口转发或者veth,但是不在本文讨论范围内。(这也是我实际生产环境最终还是没有采用VRF的原因) VRF的优点 虽然说DN42使用的IP段是私有地址,并且它的ASN用的都是内部ASN,理论上不会和公网BGP相互干扰,但是如果共用同一张路由表,可能会造成路由污染、管理复杂等问题。 VRF(Virtual Routing and Forwarding,虚拟路由转发)可以实现在一台机器上创建多个路由表,也就是说我们可以通过它将DN42的路由单独放到一个路由表里,以实现将DN42路由表和公网路由表相隔离。这么做的优点有: 绝对的安全与策略隔离:DN42路由表和公网路由表相隔离,从根本上杜绝了路由泄露的可能性。 清晰的运维管理:可以使用birdc show route table t_dn42和birdc show route table t_inet来分别查看和调试两张完全独立的路由表,一目了然。 故障域隔离:若果DN42的某个对等体发生Flap,这些影响将被完全限制在dn42的路由表内,不会消耗公网实例的路由计算资源,也不会影响公网的转发性能。 更符合现代网络设计理念:在现代网络工程中,为不同的路由域(生产、测试、客户、合作伙伴)使用VRF是标准做法。它将你的设备逻辑上划分成了多个虚拟路由器。 配置 系统部分 创建VRF设备 使用以下指令创建一个名为dn42-vrf的VRF设备并关联到系统的1042号路由表: ip link add dn42-vrf type vrf table 1042 ip link set dev dn42-vrf up # 启用 路由表号可以按照你自己的喜好修改,但是请避开以下几个保留路由表编号: 名称 ID 说明 unspec 0 未指定,基本不用 main 254 主路由表,大多数普通路由都放在这里 default 253 一般不用,保留 local 255 本机路由表,存放127.0.0.1/8、本机 IP、广播地址等,不能改 将现有的相应网卡关联到VRF 按照我目前的DN42网络为例,有若干WireGuard网卡和一个dummy网卡是用于DN42的,因此将这几个网卡都关联到VRF中: ip link set dev <网卡名> master dn42-vrf 需要注意的是,网卡关联到VRF之后可能会丢失地址,因此需要重新为其添加一次地址,如: ip addr add 172.20.234.225 dev dn42 完成之后,通过ip a应该能看到对应网卡的master是dn42-vrf: 156: dn42: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue master dn42-vrf state UNKNOWN group default qlen 1000 link/ether b6:f5:28:ed:23:04 brd ff:ff:ff:ff:ff:ff inet 172.20.234.225/32 scope global dn42 valid_lft forever preferred_lft forever inet6 fd18:3e15:61d0::1/128 scope global valid_lft forever preferred_lft forever inet6 fe80::b4f5:28ff:feed:2304/64 scope link valid_lft forever preferred_lft forever 持久化 我使用了ifupdown来实现开机自动加载dummy网卡和VRF设备。 对于VRF设备,创建文件/etc/network/interfaces.d/01-dn42-vrf并填入: auto dn42-vrf iface dn42-vrf inet manual pre-up ip link add $IFACE type vrf table 1042 up ip link set dev $IFACE up post-down ip link del $IFACE 然后使用ifup dn42-vrf启动。 对于dummy网卡,创建文件/etc/network/interfaces.d/90-dn42并填入: auto dn42 iface dn42 inet static address 172.20.234.225 netmask 32 pre-up ip link add $IFACE type dummy up ip link set $IFACE up master dn42-vrf # 此处master指定和dn42-vrf相关联 down ip link set $IFACE down post-down ip link del $IFACE iface dn42 inet6 static address fd18:3e15:61d0::1 netmask 128 因为ifupdown不支持同时配置v4和v6地址,因此需要分成两个iface。 我的dummy网卡名称为dn42,如果你的名称不一样请按需要修改。创建完后使用ifup dn42即可启动dummy网卡。 注意:VRF设备前面的标号需要比dummy网卡的大,以让VRF设备先于dummy网卡启动。 WireGuard隧道 添加PostUp使其关联到vrf并重新为其绑定地址。举个例子: [Interface] PrivateKey = [数据删除] ListenPort = [数据删除] Table = off Address = fe80::2024/64 PostUp = sysctl -w net.ipv6.conf.%i.autoconf=0 + PostUp = ip link set dev %i master dn42-vrf + PostUp = ip addr add fe80::2024/64 dev %i [Peer] PublicKey = [数据删除] Endpoint = [数据删除] AllowedIPs = 10.0.0.0/8, 172.20.0.0/14, 172.31.0.0/16, fd00::/8, fe00::/8 然后重新启动隧道即可。 Bird2部分 首先我们需要定义两张路由表,分别用于dn42的IPv4和IPv6: ipv4 table dn42_table_v4; ipv6 table dn42_table_v6 随后,在kernel protocol中指定VRF和系统路由表编号,并在IPv4、IPv6中指定前面创建的v4、v6路由表: protocol kernel dn42_kernel_v6{ + vrf "dn42-vrf"; + kernel table 1042; scan time 20; ipv6 { + table dn42_table_v6; import none; export filter { if source = RTS_STATIC then reject; krt_prefsrc = DN42_OWNIPv6; accept; }; }; }; protocol kernel dn42_kernel_v4{ + vrf "dn42-vrf"; + kernel table 1042; scan time 20; ipv4 { + table dn42_table_v4; import none; export filter { if source = RTS_STATIC then reject; krt_prefsrc = DN42_OWNIP; accept; }; }; } 除了kernel以外的protocol都加上VRF和IPv4、IPv6独立的table,但不需要指定系统路由表编号: protocol static dn42_static_v4{ + vrf "dn42-vrf"; route DN42_OWNNET reject; ipv4 { + table dn42_table_v4; import all; export none; }; } protocol static dn42_static_v6{ + vrf "dn42-vrf"; route DN42_OWNNETv6 reject; ipv6 { + table dn42_table_v6; import all; export none; }; } 总而言之就是: 一切和DN42有关的都给配置一个VRF和之前定义的路由表 只有kernel协议需要指定系统路由表编号,其他不需要 对于BGP、OSPF等也如法炮制,不过我选择将公网的RouterID和DN42的分开,因此还需要单独配置一个RouterID: # /etc/bird/dn42/ospf.conf protocol ospf v3 dn42_ospf_iyoroynet_v4 { + vrf "dn42-vrf"; + router id DN42_OWNIP; ipv4 { + table dn42_table_v4; import where is_self_dn42_net() && source != RTS_BGP; export where is_self_dn42_net() && source != RTS_BGP; }; include "ospf/*"; }; protocol ospf v3 dn42_ospf_iyoroynet_v6 { + vrf "dn42-vrf"; + router id DN42_OWNIP; ipv6 { + table dn42_table_v6; import where is_self_dn42_net_v6() && source != RTS_BGP; export where is_self_dn42_net_v6() && source != RTS_BGP; }; include "ospf/*"; }; # /etc/bird/dn42/ebgp.conf ... template bgp dnpeers { + vrf "dn42-vrf"; + router id DN42_OWNIP; local as DN42_OWNAS; path metric 1; ipv4 { + table dn42_table_v4; ... }; ipv6 { + table dn42_table_v6; ... }; } include "peers/*"; 完成后birdc c重载配置即可。 这时,我们可以通过ip route show vrf dn42-vrf来单独查看DN42的路由表: root@iYoRoyNetworkHKGBGP:~# ip route show vrf dn42-vrf 10.26.0.0/16 via inet6 fe80::ade0 dev dn42_4242423914 proto bird src 172.20.234.225 metric 32 10.29.0.0/16 via inet6 fe80::ade0 dev dn42_4242423914 proto bird src 172.20.234.225 metric 32 10.37.0.0/16 via inet6 fe80::ade0 dev dn42_4242423914 proto bird src 172.20.234.225 metric 32 ... 也可以在Ping的时候通过参数-I dn42-vrf来实现通过VRF Ping: root@iYoRoyNetworkHKGBGP:~# ping 172.20.0.53 -I dn42-vrf ping: Warning: source address might be selected on device other than: dn42-vrf PING 172.20.0.53 (172.20.0.53) from 172.20.234.225 dn42-vrf: 56(84) bytes of data. 64 bytes from 172.20.0.53: icmp_seq=1 ttl=64 time=3.18 ms 64 bytes from 172.20.0.53: icmp_seq=2 ttl=64 time=3.57 ms 64 bytes from 172.20.0.53: icmp_seq=3 ttl=64 time=3.74 ms 64 bytes from 172.20.0.53: icmp_seq=4 ttl=64 time=2.86 ms ^C --- 172.20.0.53 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3006ms rtt min/avg/max/mdev = 2.863/3.337/3.740/0.341 ms 注意事项 如果vrf设备重载了,所有原先和vrf相关联的设备都需要重载一次,否则无法正常工作 目前DN42是无法访问到配置了VRF的主机内的服务的,后续可能出一篇文章讲一下如何去让VRF内的流量可以访问到主机服务(挖坑ing) 参考文章: 用 BIRD 运行你的 MPLS 网络
2025年09月16日
44 阅读
0 评论
0 点赞
DN42探究日记 - Ep.4 配置BGP Communities
写在前面 本人是BGP小白,文章中可能会存在不严谨内容/小白理解/低级错误,请诸位大佬们手下留情。若发现存在问题,您愿意的话可以邮件联系我,我会在第一时间更正。如果您不能接受,建议现在就关闭此文章。 什么是BGP Communities TL;DR: BGP Communities给路由“打标签”,其他人可以通过这个标签实现路由优选 这个概念对于刚入坑的小白 (比如我) 来说可能比较陌生,可能不理解它是干吗用的 简单来说,BGP Communities是一种标记路由的机制,类似于给路由打标签。它允许网络管理员给通过BGP传播的路由附加一个或多个“标签”(即社区值)。这些标签本身并不改变路由的路径属性(如AS_PATH、LOCAL_PREF、MED等),但它们提供了一种信号机制,用于向本AS内或下游对等AS中的其他路由器指示应该对该路由执行何种策略或处理。BGP Communities可以用来: 简化策略配置: 网络内部或下游 AS 的路由器只需配置基于社区值的策略(如设置LOCAL_PREF、添加NO_EXPORT、应用路由图等),无需知道具体的前缀细节。这使得策略更集中、更易管理、更不易出错 传达策略意图给下游AS: 可以将社区值附加在它通告给下游客户或对等AS的路由上。这些社区值传达了对这些路由应如何处理的要求或建议,如根据不同地理位置、不同延迟和带宽来进行路由优选等 在AS内部协调策: 在大型AS内部,IBGP全互联或使用路由反射器时,可以在 AS 边缘路由器(接收 EBGP 路由或重分发路由的路由器)给路由打上社区值,AS内部的核心路由器或路由反射器可以识别这些社区值,并应用相应的内部策略(如设置LOCAL_PREF、MED、决定是否向某些IBGP对等体通告、打上其他社区等),而无需在每个内部路由器上配置复杂的基于前缀的策略 DN42中有一套自己的Communities规范,详情可参考:BGP-communities - DN42 Wiki 配置 本文大致思路和方案来源于Xe_iu大佬,仅针对地理位置信息添加BGP Communities并进行优选。一般来说这样就足够了。(还有个原因是其他的我还没太搞明白) 注意: 我们应该只对自己的AS添加地理位置信息相关的BGP Communities,不应当对邻居传递来的路由添加相关条目。若对邻居的路由加上自己的地区Communities则会造成伪造路由起源,引发路由劫持。下游可能会误判流量路径,将本应直连的流量绕道至你的网络,增加延迟的同时大量消耗你的网络的流量。(Large Communities除外,Large Community有一套验证机制可以防止此类事情发生,但是不在本文讨论范围内) 思路已经很明白了,在导出路由时我们需要先验证是否是我们自己的路由,如果是则为路由打上communities标签即可。DN42官方给的样例配置中已经写好了两个函数is_self_net()和is_self_net_v6()用于检查是否是自己的路由,因此编写配置文件部分就很简单了。 为路由添加Communities 首先我们需要在节点配置文件开头定义好当前节点的地理区域信息,详情请查询BGP-communities - DN42 Wiki: define DN42_REGION = 52; # 52代表亚洲东部地区 define DN42_COUNTRY= 1344; # 1344代表香港 请将上述数值按照你的节点地理位置情况修改 随后在dnpeers模板中修改导出的过滤器: }; export filter { - if is_valid_network() && source ~ [RTS_STATIC, RTS_BGP] then accept; + if is_valid_network() && source ~ [RTS_STATIC, RTS_BGP] then{ + if (is_self_net()) then { # 检查是否是自己的路由 + bgp_community.add((64511, DN42_REGION)); # 打上大洲级别的区域信息 + bgp_community.add((64511, DN42_COUNTRY)); # 打上国家/地区信息 + } + accept; + } reject; }; import limit 1000 action block; 在导出时检查,如果是自己的路由则按照上面设置的DN42_REGION和DN42_COUNTRY为该路由设置bgp_community。其中,64511是专门为地理标签(Region/Country)保留的公共AS号标识符,直接照抄即可。在IPv6的导出规则中也如法炮制,不过将is_self_net()换成is_self_net_v6()即可。 根据Communities优选 此处我们需要引入另一个概念:local_pref(Local Preference),他用于在AS内部标识路由的优先级。其默认值为100,值越大优先级越高。并且在BGP选路逻辑中,local_pref有着最高的优先级,甚至高于AS_PATH长度。也就是说,通过设置local_pref我们可以调整整个路由的优先级,以实现路由优选。 再结合上文的BGP Communities,我们可以根据Communities来为路由设置相应的local_pref来实现优选。同时,因为BGP.local_pref会在AS内部传递,所以需要同时更改eBGP和iBGP的路由导入和导出逻辑。 此处我处理BGP.local_pref的逻辑参考 (实际上是照抄) 了Xe_iu大佬的方案: 对于同一个大洲的路由,优先级+10 对于同一个国家,优先级再+5 对于直接和自己Peer的路由,优先级再+20 创建一个函数用于优先级计算: function ebgp_calculate_priority() { int priority = 100; # 基础优先级 # 同区域检测(+10) if bgp_community ~ [(64511, DN42_REGION)] then priority = priority + 10; # 同国家检测(+5) if bgp_community ~ [(64511, DN42_COUNTRY)] then priority = priority + 5; # eBGP直接邻居检测(+20) if bgp_path.len = 1 then priority = priority + 20; return priority; } 接着,在dnpeers模板中的导入过滤器中将bgp_local_pref设置为从函数计算出来的值: template bgp dnpeers { local as OWNAS; path metric 1; ipv4 { import filter { if is_valid_network() && !is_self_net() then { if (roa_check(dn42_roa, net, bgp_path.last) != ROA_VALID) then { print "[dn42] ROA check failed for ", net, " ASN ", bgp_path.last; reject; } + bgp_local_pref = ebgp_calculate_priority(); accept; } reject; }; IPv6也如法炮制即可。 运行birdc configure之后,我们应该就能在自己的邻居那里看到我们的路由已经被打上了Communities标签: (此处截图来自:https://lg.milu.moe/route_all/hk/172.20.234.224) 特别感谢Nuro Trace大佬和Xe_iu大佬,他们帮助我加深了对BGP Communities的理解并提供了很多帮助 参考文章: [DN42] bird2的配置文件 – Xe_iu's Blog | Xe_iu的杂物间 [DN42] 谈一谈如何配置 BGP community – Xe_iu's Blog | Xe_iu的杂物间 BGP-communities - DN42 Wiki
2025年08月17日
51 阅读
0 评论
1 点赞
DN42探究日记 - Ep.3 在DN42中注册域名并搭建权威DNS
写在前面 本人是BGP小白,文章中可能会存在不严谨内容/小白理解/低级错误,请诸位大佬们手下留情。若发现存在问题,您愿意的话可以邮件联系我,我会在第一时间更正。如果您不能接受,建议现在就关闭此文章。 假设你已经加入了DN42,并且能够正常收发路由表并且访问到DN42内的IP 起因 在调试网络的时候发现Ping或traceroute别人的DN42 IP都能显示出来反向解析的域名,能知道路由经过了哪些节点而不是单纯的看IP(如下图),非常一目了然,让别人一眼就看出来你绕路了(逃), 因此打算自己也注册一个DN42域名并搭建权威DNS服务。 查阅了蓝天大佬的这篇文章,他使用了PowerDNS+MySQL主从同步方案,但是我的服务器性能较差(只有1核心1GB内存),因此打算使用KnotDNS作为DNS服务器,用标准区域传输协议(AXFR/IXFR)实现主从同步。 准备工作 {alert type="warning"} 本章及后续章节中提到的域名和IP均为我自己的域名和IP,实际部署时请换成你自己的;文章中尖括号括起来的值需要按你的需求修改 {/alert} 挑选一个自己心仪的域名:yori.dn42,并且计划在三台机器上部署DNS服务器: 172.20.234.225, fd18:3e15:61d0::1, ns1.yori.dn42 172.20.234.227, fd18:3e15:61d0::3, ns2.yori.dn42 172.20.234.229, fd18:3e15:61d0::5, ns3.yori.dn42 其中,ns1.yori.dn42作为主服务器,ns2、ns3作为从服务器。 安装KnotDNS 如果系统的53端口被systemd-resolvd之类的进程占用了,就先将其禁用: systemctl stop systemd-resolved systemctl disable systemd-resolved unlink /etc/resolv.conf echo "nameserver 8.8.8.8" > /etc/resolv.conf 我使用的是Debian12系统,因此使用APT安装: apt install knot knot-dnsutils -y 设置KnotDNS自启动: systemctl enable knot 配置KnotDNS 创建key 首先创建一个key用于同步: keymgr -t key_knsupdate 将输出部分复制下来: # hmac-sha256:key_knsupdate:<your secret> key: - id: key_knsupdate algorithm: hmac-sha256 secret: <your secret> 编辑配置文件 主服务器 编辑/etc/knot/knot.conf,填入如下内容: server: rundir: "/run/knot" user: knot:knot automatic-acl: on listen: [ <监听地址1>@53, <监听地址2>@53, ... ] log: - target: syslog any: info database: storage: "/var/lib/knot" ### 此处粘贴上一步生成的Key # hmac-sha256:key_knsupdate:<your secret> key: - id: key_knsupdate algorithm: hmac-sha256 secret: <your secret> remote: - id: <1号DNS服务器ID> address: <1号DNS服务器IP>@53 - id: <2号DNS服务器ID> address: <2号DNS服务器IP>@53 - id: <3号DNS服务器ID> address: <3号DNS服务器IP>@53 acl: - id: acl_slave key: key_knsupdate action: transfer - id: acl_master key: key_knsupdate action: notify - id: acl_knsupdate key: key_knsupdate action: update template: - id: default storage: "/var/lib/knot" file: "%s.zone" zone: - domain: <DN42 域名> notify: [ <从服务器1ID>, <从服务器2ID> ] acl: [ acl_slave, acl_knsupdate ] - domain: <IPv4反向解析域名> notify: [ <从服务器1ID>, <从服务器2ID> ] acl: [ acl_slave, acl_knsupdate ] - domain: <IPv6反向解析域名> notify: [ <从服务器1ID>, <从服务器2ID> ] acl: [ acl_slave, acl_knsupdate ] 其中,监听地址需要填写本机的DN42 IPv4和DN42 IPv6,如果需要本地调试可再加上127.0.0.1和localhost等内网IP 从服务器ID即remote里设置的服务器的ID,你选定哪台(哪些)机器作为从服务器就填写哪台(哪些)服务器的ID remote中的address可以填写内网地址或者DN42 IPv4或者DN42 IPv6,仅用于同步主从服务器。如果使用内网地址请将地址加到监听列表中 template中设置了将Zone文件存储在/var/lib/knot下 IPv4反向解析域名按照你申请的IPv4段填写,遵循RFC 2317规定的格式,如我的IPv4段是172.20.234.224/28,我的IPv4反向解析域名应该为224/28.234.20.172.in-addr.arpa,即将IPv4的最后一段225/28看作一个整体,剩下的按照点来分隔,再将各个部分倒序拼接,最后加上.in-addr.arpa IPv6反向解析域名按照你申请的IPv6段填写,遵循RFC 3152规定的格式,如我的IPv6段是fd18:3e15:61d0::/48,我的IPv6反向解析域名应该为0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa,即将地址块中的各个字符倒序拼接,最后加上.in-addr.arpa。如果有0需要补全。 {collapse} {collapse-item label="示例"} server: rundir: "/run/knot" user: knot:knot automatic-acl: on listen: [ 172.20.234.225@53, fd18:3e15:61d0::1@53, localhost@53, 127.0.0.2@53 ] log: - target: syslog any: info database: storage: "/var/lib/knot" # hmac-sha256:key_knsupdate:dyE7/N3CLTE5IFKfpBK0Gaij6aPnXkv/4sp1gUORlsk= key: - id: key_knsupdate algorithm: hmac-sha256 secret: dyE7/N3CLTE5IFKfpBK0Gaij6aPnXkv/4sp1gUORlsk= remote: - id: 225 # 主服务器 address: 172.20.234.225@53 - id: 227 # 从服务器 address: 172.20.234.227@53 - id: 229 # 从服务器 address: 172.20.234.229@53 acl: - id: acl_slave key: key_knsupdate action: transfer - id: acl_master key: key_knsupdate action: notify - id: acl_knsupdate key: key_knsupdate action: update template: - id: default storage: "/var/lib/knot" file: "%s.zone" zone: - domain: yori.dn42 notify: [ 227, 229 ] acl: [ acl_slave, acl_knsupdate ] - domain: 224/28.234.20.172.in-addr.arpa notify: [ 227, 229 ] acl: [ acl_slave, acl_knsupdate ] - domain: 0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa notify: [ 227, 229 ] acl: [ acl_slave, acl_knsupdate ] # # Secondary zone # - domain: example.net # master: primary {/collapse-item} {/collapse} 从服务器 从服务器的大致内容和主服务器相同,只需要将监听地址改成从服务器的地址,并且将zone部分配置修改一下: --- a/knot.conf +++ b/knot.conf zone: - domain: <DN42 域名> - notify: [ <从服务器1ID>, <从服务器2ID> ] - acl: [ acl_slave, acl_knsupdate ] + master: <主服务器ID> + zonefile-load: whole + acl: acl_master - domain: <IPv4反向解析域名> - notify: [ <从服务器1ID>, <从服务器2ID> ] - acl: [ acl_slave, acl_knsupdate ] + master: <主服务器ID> + zonefile-load: whole + acl: acl_master - domain: <IPv6反向解析域名> - notify: [ <从服务器1ID>, <从服务器2ID> ] - acl: [ acl_slave, acl_knsupdate ] + master: <主服务器ID> + zonefile-load: whole + acl: acl_master 主服务器ID即remote里设置的服务器的ID,你选定哪台机器作为主服务器就填写哪台服务器的ID {collapse} {collapse-item label="样例"} server: rundir: "/run/knot" user: knot:knot automatic-acl: on listen: [ 172.20.234.227@53, fd18:3e15:61d0::3@53, localhost@53, 127.0.0.1@53 ] log: - target: syslog any: info database: storage: "/var/lib/knot" # hmac-sha256:key_knsupdate:<key> key: - id: key_knsupdate algorithm: hmac-sha256 secret: <key> remote: - id: 225 address: 172.20.234.225@53 - id: 227 address: 172.20.234.227@53 - id: 229 address: 172.20.234.229@53 acl: - id: acl_slave key: key_knsupdate action: transfer - id: acl_master key: key_knsupdate action: notify - id: acl_knsupdate key: key_knsupdate action: update template: - id: default storage: "/var/lib/knot" file: "%s.zone" zone: - domain: yori.dn42 master: 225 zonefile-load: whole acl: acl_master - domain: 224/28.234.20.172.in-addr.arpa master: 225 zonefile-load: whole acl: acl_master - domain: 0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa master: 225 zonefile-load: whole acl: acl_master {/collapse-item} {/collapse} 编写完配置文件后运行如下指令重启KnotDNS: systemctl restart knot 编辑Zone区域文件 此章节中的记录值(非主机名)若需要填写域名,除了特殊说明外,都请遵循RFC 1034规范填写FQDN格式。此章节中的所有配置均在主DNS服务器上完成 DN42域名 进入/var/lib/knot,创建文件<dn42域名>.zone SOA记录 域名的第一条记录必须为SOA记录,SOA记录是起始授权记录,记录了域名的一些基本信息如主要NS服务器地址。填入如下内容: @ <TTL> SOA <主要NS服务器地址> <联系人邮件> <记录编号> <AXFR刷新时间> <AXFR重试时间> <AXFR过期时间> <最小TTL> @表示是当前域名本身,不用修改 TTL: 当前SOA记录的TTL值 主要NS服务器地址: 当前域名的主要权威NS服务器地址,可以是域名内的解析值,如我的主要NS服务器是172.20.234.225,我打算使用ns1.yori.dn42.指向此地址,那么此处可填写ns1.yori.dn42. 联系人邮件: 邮箱地址,并且用.代替@,如我的邮箱是i@iyoroy.cn,那么此处可填写i.iyoroy.cn 记录编号: 一个10位数字,遵循RFC 1912,表示Zone文件的版本号。其他DNS服务器在获取SOA后发现序列号增加了就会重新拉取新的记录。一般使用日期+编号的方式编码,因此此项值应该在每次修改后递增。 AXFR刷新时间: AXFR从服务器两次拉取的间隔 AXFR重试时间: AXFR从服务器拉取失败后重试时间 AXFR过期时间: AXFR从服务器拉取失败后,最多用先前最后一次拉取成功的记录继续提供服务这么长时间,之后停止应答 最小TTL: 当前整个域名的最小TTL值,所有记录的最小刷新时间,至少过了这么长时间才会刷新 {collapse} {collapse-item label="样例"} ; SOA @ 3600 SOA ns1.yori.dn42. i.iyoroy.cn. 2025072705 60 60 1800 60 {/collapse-item} {/collapse} NS记录 @ <TTL> NS <NS服务器1> @ <TTL> NS <NS服务器2> @ <TTL> NS <NS服务器3> 根据你的实际情况填写,有几台服务器就填写几条记录。 {collapse} {collapse-item label="样例"} ; NS @ 3600 NS ns1.yori.dn42. @ 3600 NS ns2.yori.dn42. @ 3600 NS ns3.yori.dn42. {/collapse-item} {/collapse} A、AAAA、CNAME等记录 按照如下格式填写即可: <主机名> <TTL> <类型> <记录值> 如果你的NS服务器值指向了你自己的DN42域名的主机,请务必为其添加A类型或者AAAA类型的解析记录 {collapse} {collapse-item label="样例"} ; A ns1 600 A 172.20.234.225 ns2 600 A 172.20.234.227 ns3 600 A 172.20.234.229 hkg-cn.node 600 A 172.20.234.225 nkg-cn.node 600 A 172.20.234.226 tyo-jp.node 600 A 172.20.234.227 hfe-cn.node 600 A 172.20.234.228 lax-us.node 600 A 172.20.234.229 ; AAAA ns1 600 AAAA fd18:3e15:61d0::1 ns2 600 AAAA fd18:3e15:61d0::3 ns3 600 AAAA fd18:3e15:61d0::5 hkg-cn.node 600 AAAA fd18:3e15:61d0::1 nkg-cn.node 600 AAAA fd18:3e15:61d0::2 tyo-jp.node 600 AAAA fd18:3e15:61d0::3 hfe-cn.node 600 AAAA fd18:3e15:61d0::4 lax-us.node 600 AAAA fd18:3e15:61d0::5 {/collapse-item} {collapse-item label="完整样例"} /var/lib/knot/yori.dn42.zone ; SOA @ 3600 SOA ns1.yori.dn42. i.iyoroy.cn. 2025072705 60 60 1800 60 ; NS @ 3600 NS ns1.yori.dn42. @ 3600 NS ns2.yori.dn42. @ 3600 NS ns3.yori.dn42. ; A ns1 600 A 172.20.234.225 ns2 600 A 172.20.234.227 ns3 600 A 172.20.234.229 hkg-cn.node 600 A 172.20.234.225 nkg-cn.node 600 A 172.20.234.226 tyo-jp.node 600 A 172.20.234.227 hfe-cn.node 600 A 172.20.234.228 lax-us.node 600 A 172.20.234.229 ; AAAA ns1 600 AAAA fd18:3e15:61d0::1 ns2 600 AAAA fd18:3e15:61d0::3 ns3 600 AAAA fd18:3e15:61d0::5 hkg-cn.node 600 AAAA fd18:3e15:61d0::1 nkg-cn.node 600 AAAA fd18:3e15:61d0::2 tyo-jp.node 600 AAAA fd18:3e15:61d0::3 hfe-cn.node 600 AAAA fd18:3e15:61d0::4 lax-us.node 600 AAAA fd18:3e15:61d0::5 {/collapse-item} {/collapse} IPv4反向解析域名 在/var/lib/knot下创建文件<IPv4反向解析域名>.in-addr.arpa,并用_代替/。如我的IPv4段是172.20.234.224/28,我的IPv4反向解析域名是224/28.234.20.172.in-addr.arpa,那么此处文件名为224_28.234.20.172.in-addr.arpa.zone。填入解析记录: ; SOA @ <TTL> SOA <主要NS服务器地址> <联系人邮件> <记录编号> <AXFR刷新时间> <AXFR重试时间> <AXFR过期时间> <最小TTL> ; NS @ <TTL> NS <NS服务器1> @ <TTL> NS <NS服务器2> @ <TTL> NS <NS服务器3> ; PTR <IPv4地址最后一位> <TTL> PTR <反向解析DNS值> <IPv4地址最后一位> <TTL> PTR <反向解析DNS值> <IPv4地址最后一位> <TTL> PTR <反向解析DNS值> ... SOA和NS记录和上方相同 IPv4地址最后一位: 你给设备绑定的DN42 IPv4地址四段中的最后一段,如我的HK节点分配的172.20.234.225地址,那么此处就填写`225 {collapse} {collapse-item label="样例"} 224_28.234.20.172.in-addr.arpa.zone ; SOA @ 3600 SOA ns1.yori.dn42. i.iyoroy.cn. 2025072802 60 60 1800 60 ; NS @ 3600 NS ns1.yori.dn42. @ 3600 NS ns2.yori.dn42. @ 3600 NS ns3.yori.dn42. ; PTR 225 600 PTR hkg-cn.node.yori.dn42. 226 600 PTR nkg-cn.node.yori.dn42. 227 600 PTR tyo-jp.node.yori.dn42. 228 600 PTR hfe-cn.node.yori.dn42. 229 600 PTR lax-us.node.yori.dn42. {/collapse-item} {/collapse} 你可能会疑惑为何需要带上CIDR掩码,这与Clearnet中常见的、按八位组倒序的格式(如234.20.172.in-addr.arpa)不同;以及如果你尝试本地测试,你会发现直接测试你自己的IP地址的反解会失败。 原因在于DN42的分布式注册机制:单个区域文件无法覆盖你的地址段的所有反向查询入口点(即每个具体IP地址对应的.in-addr.arpa名称)。为了解决这个问题,DN42官方DNS会在你的PR被合并后,在其权威DNS服务器上为你的地址段添加CNAME重定向,将单个IP的PTR记录指向你的带CIDR的格式,如下: ~$ dig PTR 225.234.20.172.in-addr.arpa +short 225.224/28.234.20.172.in-addr.arpa. # <-- Registry 添加的 CNAME (重定向) hkg-cn.node.yori.dn42. # <-- DNS 返回的最终 PTR 记录 当外部解析器查询某个具体IP (如172.20.234.225) 的反向记录时(查询225.234.20.172.in-addr.arpa),官方DNS会返回一个CNAME记录,将其指向CIDR的区域名称下的具体记录(225.224/28.234.20.172.in-addr.arpa)。最终,PTR 记录由你配置的权威 DNS 服务器提供。 IPv6反向解析域名 在/var/lib/knot下创建文件<IPv6反向解析域名>.in-addr.arpa。如我的IPv6段是fd18:3e15:61d0::/48,我的IPv6反向解析域名是0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa,那么此处文件名为0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa.zone。填入解析记录: ; SOA @ <TTL> SOA <主要NS服务器地址> <联系人邮件> <记录编号> <AXFR刷新时间> <AXFR重试时间> <AXFR过期时间> <最小TTL> ; NS @ <TTL> NS <NS服务器1> @ <TTL> NS <NS服务器2> @ <TTL> NS <NS服务器3> ; PTR <最后20字符反向序列> <TTL> PTR <反向解析DNS值> <最后20字符反向序列> <TTL> PTR <反向解析DNS值> <最后20字符反向序列> <TTL> PTR <反向解析DNS值> ... SOA和NS记录处理方式同上 PTR的主机名,需要你将主机IPv6地址移除/48前缀后的80位部分展开为20个十六进制字符,并倒序排列这些字符并用点分隔。如我的香港节点IPv6是fd18:3e15:61d0::1,展开就是fd18:3e15:61d0:0000:0000:0000:0000:0001,此处主机名就填写1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 {collapse} {collapse-item label="样例"} 0.d.1.6.5.1.e.3.8.1.d.f.ip6.arpa.zone ; SOA @ 3600 SOA ns1.yori.dn42. i.iyoroy.cn. 2025072802 60 60 1800 60 ; NS @ 3600 NS ns1.yori.dn42. @ 3600 NS ns2.yori.dn42. @ 3600 NS ns3.yori.dn42. ; PTR 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 600 PTR hkg-cn.node.yori.dn42. 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 600 PTR nkg-cn.node.yori.dn42. 3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 600 PTR tyo-jp.node.yori.dn42. 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 600 PTR hfe-cn.node.yori.dn42. 5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 600 PTR lax-us.node.yori.dn42. {/collapse-item} {/collapse} 验证设置 全部保存后在每台DNS服务器上都运行一次knot reload重载,不出意外的话应该能看到从服务器同步了主服务器的zone文件,此时通过dig或者nslookup指定服务器查询应该能查到解析记录了 注册 域名 克隆下DN42 Registry,进入data/dns,新建文件<你打算注册的域名>,填入如下内容: domain: <你打算注册的域名> admin-c: <管理员NIC句柄> tech-c: <技术人员NIC句柄> mnt-by: <维护者> nserver: <NS1服务器域名> <NS1服务器IP> nserver: <NS2服务器域名> <NS2服务器IP> nserver: <NS3服务器域名> <NS3服务器IP> ... source: DN42 admin-c、tech-c、mnt-by请参考DN42探究日记 - Ep.1 加入DN42网络 {collapse} {collapse-item label="样例"} data/dns/yori.dn42 domain: yori.dn42 admin-c: IYOROY-DN42 tech-c: IYOROY-DN42 mnt-by: IYOROY-MNT nserver: ns1.yori.dn42 172.20.234.225 nserver: ns1.yori.dn42 fd18:3e15:61d0::1 nserver: ns2.yori.dn42 172.20.234.227 nserver: ns2.yori.dn42 fd18:3e15:61d0::3 nserver: ns3.yori.dn42 172.20.234.229 nserver: ns3.yori.dn42 fd18:3e15:61d0::5 source: DN42 {/collapse-item} {/collapse} IPv4反向解析域名 进入data/inetnum,找到你注册的地址块,加nserver字段,填写为你自己的DNS服务器: nserver: <你的DNS服务器地址> nserver: <你的DNS服务器地址> ... {collapse} {collapse-item label="样例"} diff --git a/data/inetnum/172.20.234.224_28 b/data/inetnum/172.20.234.224_28 index 50c800945..5ad60e23d 100644 --- a/data/inetnum/172.20.234.224_28 +++ b/data/inetnum/172.20.234.224_28 @@ -8,3 +8,6 @@ tech-c: IYOROY-DN42 mnt-by: IYOROY-MNT status: ASSIGNED source: DN42 +nserver: ns1.yori.dn42 +nserver: ns2.yori.dn42 +nserver: ns3.yori.dn42 {/collapse-item} {/collapse} IPv6反向解析域名 进入data/inet6num,找到你注册的地址块,加nserver字段,填写为你自己的DNS服务器: nserver: <你的DNS服务器地址> nserver: <你的DNS服务器地址> ... {collapse} {collapse-item label="样例"} diff --git a/data/inet6num/fd18:3e15:61d0::_48 b/data/inet6num/fd18:3e15:61d0::_48 index 53f0de06d..1ae067b00 100644 --- a/data/inet6num/fd18:3e15:61d0::_48 +++ b/data/inet6num/fd18:3e15:61d0::_48 @@ -8,3 +8,6 @@ tech-c: IYOROY-DN42 mnt-by: IYOROY-MNT status: ASSIGNED source: DN42 +nserver: ns1.yori.dn42 +nserver: ns2.yori.dn42 +nserver: ns3.yori.dn42 {/collapse-item} {/collapse} 提交PR,等待合并 填写完后推送并提交Pull Request。因为DN42中人人都可以建立递归DNS,DNS配置完全生效可能要一周左右。虽然我实测合并后半天以内公共DNS(172.20.0.53)就已经能查询到我的记录了 特别感谢たのしい大佬,让我明白了DN42中IPv4反向解析与公网的不同之处 参考文章: https://www.haiyun.me/archives/1398.html https://www.jianshu.com/p/7d69ec2976c7 https://www.potat0.cc/posts/20220726/Register_DN42_Domain/ https://bbs.csdn.net/topics/393775423 https://blog.snorlax.blue/knot-reverse-dns-kickstart/ http://www.kkdlabs.jp/dns/automatic-dnssec-signing-by-knot-dns/ https://lantian.pub/article/modify-website/register-own-domain-in-dn42.lantian/ https://datatracker.ietf.org/doc/html/rfc2317 https://datatracker.ietf.org/doc/html/rfc3152 https://datatracker.ietf.org/doc/html/rfc1912#section-2.2
2025年08月03日
49 阅读
0 评论
1 点赞
DN42探究日记 - Ep.2 通过OSPF搭建内部网络并启用iBGP
写在前面 本人是BGP小白,文章中可能会存在不严谨内容/小白理解/低级错误,请诸位大佬们手下留情。若发现存在问题,您愿意的话可以邮件联系我,我会在第一时间更正。如果您不能接受,建议现在就关闭此文章。 本文更新日志 {timeline} {timeline-item color="#50BFFF"} 2025年7月22日:文章第一版发布,使用VXLAN over WireGuard隧道 {/timeline-item} {timeline-item color="#50BFFF"} 2025年7月25日:更新隧道方案,使用type ptp;以支持直接通过WireGuard传输OSPF流量(特别感谢Nuro Trance大佬指导!) {/timeline-item} {timeline-item color="#50BFFF"} 2025年8月8日:添加iBGP部分的解释和配置 {/timeline-item} {timeline-item color="#4F9E28"} 2025年8月27日:更新节点拓扑结构图 {/timeline-item} {/timeline} 为什么需要内部路由 当节点数量增多,我们需要一个合适的方式处理自己AS的内部路由。因为BGP路由只负责将数据包路由到AS,这就导致了一个问题:假如我有A、B两个节点都与别人peer,但是在路由器看来这两台设备同属于一个AS,从A节点发出的请求回包可能被回到B上。这个时候,如果没有做内部路由,则A会无法收到回包。因此,我们需要保证自家内网各个设备之间都能连通。常见的几种方式如下: 通过ZeroTier等组网工具:这种方式较为简单,只需要在每个节点上配置一个客户端即可实现各个节点之间的P2P连接。 通过WireGuard等P2P工具手动建立$\frac{n(n+1)}{2}$条隧道,效果同1,但是节点一多工作量呈指数级上升 通过WireGuard等P2P工具手动建立<$\frac{n(n+1)}{2}$条隧道,再通过OSPF、Babel等内网寻路协议建立内网路由,优点是较为灵活,易于后期添加新节点,缺点就是较为危险,容易配置错误引爆DN42。 因此我决定冒险一下 节点拓扑 graph LR A[HKG<br>172.20.234.225<br>fd18:3e15:61d0::1] B[NKG<br>172.20.234.226<br>fd18:3e15:61d0::2] C[TYO<br>172.20.234.227<br>fd18:3e15:61d0::3] D[LAX<br>172.20.234.229<br>fd18:3e15:61d0::5] B <--> A C <--> A A <--> D C <--> D 更新Bird2至v2.16及以上 因为我希望使用IPv6 Link-Local地址传递IPv4的OSPF数据,而Bird在2.16及以后才支持这项功能,因此需要更新至v2.16。如果你不希望更新,可以先跳过此步骤。 使用以下指令安装最新版本的Bird2: sudo apt update && sudo apt -y install apt-transport-https ca-certificates wget lsb-release sudo wget -O /usr/share/keyrings/cznic-labs-pkg.gpg https://pkg.labs.nic.cz/gpg echo "deb [signed-by=/usr/share/keyrings/cznic-labs-pkg.gpg] https://pkg.labs.nic.cz/bird2 $(lsb_release -sc) main" | sudo tee /etc/apt/sources.list.d/cznic-labs-bird2.list sudo apt update && sudo apt install bird2 -y 配置隧道 [Interface] PrivateKey = <本地WireGuard私钥> ListenPort = <监听端口> Table = off Address = <IPv6 LLA>/64 PostUp = sysctl -w net.ipv6.conf.%i.autoconf=0 [Peer] PublicKey = <对端公钥> Endpoint = <对端公网接入点> AllowedIPs = 10.0.0.0/8, 172.20.0.0/14, 172.31.0.0/16, fd00::/8, fe00::/8, ff02::5 ff02::5是OSPFv3路由器专用的链路本地范围组播地址,需要添加进AllowedIPs。 如果你正在使用v2.16以前的Bird,请再为隧道配置一个IPv4地址,不一定非要是DN42 IPv4,其他私有地址也可以。请参考: {collapse} {collapse-item label="包含IPv4的WireGuard配置示例"} [Interface] PrivateKey = <本地WireGuard私钥> ListenPort = <监听端口> Table = off Address = <IPv6 LLA>/64 PostUp = ip addr add 100.64.0.225/32 peer 100.64.0.226/32 dev %i PostUp = sysctl -w net.ipv6.conf.%i.autoconf=0 [Peer] PublicKey = <对端公钥> Endpoint = <对端公网接入点> AllowedIPs = 10.0.0.0/8, 172.20.0.0/14, 100.64.0.0/16, 172.31.0.0/16, fd00::/8, fe00::/8, ff02::5 请将100.64.0.225、100.64.0.226替换为你本机的IPv4和对端的IPv4,并且记得加入AllowedIPs。 {/collapse-item} {/collapse} 启用OSPF 默认你已经配置好了如上一篇文章所写的bird基础配置 在/etc/bird下新建一个名为ospf.conf的文件,填入如下内容: protocol ospf v3 <name> { ipv4 { import where is_self_net() && source != RTS_BGP; export where is_self_net() && source != RTS_BGP; }; include "/etc/bird/ospf/*"; }; protocol ospf v3 <name> { ipv6 { import where is_self_net_v6() && source != RTS_BGP; export where is_self_net_v6() && source != RTS_BGP; }; include "/etc/bird/ospf/*"; }; 理论上来说应该使用OSPF v2处理IPv4,但是因为需要通过IPv6 LLA地址通信IPv4,因此此处IPv4也使用OSPF v3。 过滤规则保证只有本网段内的路由能够通过OSPF传递,并且过滤掉外部BGP协议的路由 千万不要随意使用import all;export all;,有可能会导致路由劫持并影响到整个DN42网络。OSPF只应该处理网段内部的路由。 {collapse} {collapse-item label="配置示例"} /etc/bird/ospf.conf protocol ospf v3 dn42_iyoroynet_ospf { ipv4 { import where is_self_net() && source != RTS_BGP; export where is_self_net() && source != RTS_BGP; }; include "/etc/bird/ospf/*"; }; protocol ospf v3 dn42_iyoroynet_ospf6 { ipv6 { import where is_self_net_v6() && source != RTS_BGP; export where is_self_net_v6() && source != RTS_BGP; }; include "/etc/bird/ospf/*"; }; {/collapse-item} {/collapse} 接着,新建/etc/bird/ospf文件夹,在其中创建area配置文件(如:/etc/bird/ospf/0.conf),填写区域信息: area 0.0.0.0 { interface "<DN42 dummy网卡>" { stub; }; interface "<wg0网卡名称>" { cost 80; # 按照你的网络情况修改 type ptp; }; interface "<wg1网卡名称>" { cost 100; # 按照你的网络情况修改 type ptp; }; # 以此类推 }; 0.0.0.0区域代表骨干网 此处dummy网卡指上一篇文章中所写的DN42虚拟网卡 cost值本应该是用于开销计算,但在DN42这种对带宽要求不大而对延迟较为敏感的场景下可以直接填写延迟,OSPF会自动走开销值之和最短的路由。 {collapse} {collapse-item label="配置示例"} /etc/bird/ospf/0.conf area 0.0.0.0 { interface "dn42" { stub; }; interface "dn42_hkg" { cost 80; type ptp; }; interface "dn42_hfe" { cost 150; type ptp; }; interface "dn42_lax"{ cost 100; type ptp; }; }; {/collapse-item} {/collapse} 最后,打开/etc/bird/bird.conf,在末尾引入OSPF的配置文件: include "ospf.conf"; 运行birdc configure,然后birdc show protocols应该就能看到OSPF的状态是Running了。如果不是,请检查配置步骤是否出错。 此时,在非直连的两台机器上互相ping应该就能通了: 配置iBGP 在从多个地点建立对等连接之前,您的各个节点必须首先完整掌握自身网络的拓扑结构。除了所有外部 BGP 连接外,这还需要配置另一个关键组件:内部 BGP(即 iBGP)。 必要性 iBGP可以保证AS内部所有运行BGP的路由器都能获知到达外部目的地的完整BGP路由信息,进而确保: 内部路由器可以选择最优的出口路径。 流量能够被正确地引导到负责连接特定外部网络的边界路由器。 即使存在多个边界路由器连接到同一个外部网络,内部路由器也能根据策略选择最佳出口。 相比于在AS内部使用默认路由指向边界路由器,iBGP提供了精确的外部路由信息,使得内部路由器能做出更智能的转发决策。 缺点与解决方案 为了防止路由信息在AS内部无控制地扩散导致环路,iBGP路由器不会将从某个iBGP邻居学到的路由再通告给其他iBGP邻居,这就要求传统的iBGP要求在同一个AS内所有运行iBGP的路由器之间必须建立全网状的iBGP邻居关系(Full Mesh)。(还是要建立$\frac{n(n+1)}{2}$条连接 ,没办法。不过OSPF起来之后iBGP配置还是比配置隧道简单的 ) 解决方案就是: 使用路由反射器(Route Reflector, RR): 由RR路由器管理整个AS内部所有的路由信息,缺点就是RR路由器故障将会导致整个网络瘫痪(这很不Decentralized) 通过BGP联盟(BGP Confederation) 搭建内部网络: 将AS内的路由器虚拟成一个个子AS,再把各个路由器之间的连接当作BGP处理,最后向外传递的时候抹去内部AS的路由路径。 后面两种方案我没有尝试过,下面是一些可能有用的参考文章。本文着重讨论iBGP的配置。 DN42 实验网络介绍及注册教程(2022-12 更新) - Lan Tian @ Blog Bird 配置 BGP Confederation,及模拟 Confederation(2020-06-07 更新) - Lan Tian @ Blog 编写iBGP配置文件 在/etc/bird下新建文件ibgp.conf,填入如下内容: template bgp ibgpeers { local as OWNAS; ipv4 { import where source = RTS_BGP && is_valid_network() && !is_self_net(); export where source = RTS_BGP && is_valid_network() && !is_self_net(); next hop self; extended next hop; }; ipv6 { import where source = RTS_BGP && is_valid_network_v6() && !is_self_net_v6(); export where source = RTS_BGP && is_valid_network_v6() && !is_self_net_v6(); next hop self; }; }; include "ibgp/*"; 导入和导出规则确保iBGP仅处理BGP协议学到的路由,并且过滤掉IGP的路由防止环回 next hop self是必须的,指示 BIRD 在向 iBGP 邻居导出路由时,将下一跳重写为边界路由器自身的IP地址(而非原始的外部下一跳)。因为内部路由器无法直接访问外部邻居地址,若不重写则会被认定为地址不可达。重写后,内部路由器只需通过 IGP 路由将流量送至边界路由器,由边界路由器完成最终的外部转发。 因为我希望使用IPv6地址建立MP-BGP,通过IPv6路由IPv4,因此在IPv4中启用了extended next hop 接着创建/etc/bird/ibgp文件夹,在其中为每台节点都创建一个iBGP Peer配置文件: protocol bgp 'dn42_ibgp_<节点>' from ibgpeers{ neighbor <对应节点的IPv6 ULA地址> as OWNAS; }; {collapse} {collapse-item label="样例"} /etc/bird/ibgp/hkg.conf: protocol bgp 'dn42_ibgp_HKG' from ibgpeers{ neighbor fd18:3e15:61d0::1 as OWNAS; }; {/collapse-item} {/collapse} 注意:每个节点上都需要建立(n-1)个iBGP连接,保证和AS内其他所有机器都建立连接,这也是为什么需要使用ULA地址 使用ULA地址确保即使两个节点之间的WireGuard断开,iBGP仍然能通过OSPF建立的内部路由建立,否则将会导致整个内部网络的崩溃 最后,在/etc/bird/bird.conf中加入对ibgp.conf的引入: include "ibgp.conf"; 并运行birdc configure应用配置即可。 参考文章: BIRD 与 BGP 的新手开场 - 海上的宫殿 萌新入坑 DN42 之 —— 基于 tailscale + vxlan + OSPF 的组网 – 米露小窝 使用 Bird2 配置 WireGuard + OSPF 实现网络的高可用 | bs' realm DN42 实验网络介绍及注册教程(2022-12 更新) - Lan Tian @ Blog 如何引爆 DN42 网络(2023-05-12 更新) - Lan Tian @ Blog Bird 配置 BGP Confederation,及模拟 Confederation(2020-06-07 更新) - Lan Tian @ Blog 深入解析OSPF路径开销、优先级和计时器 - 51CTO New release 2.16 | BIRD Internet Routing Daemon 第一章·第二节 如何在 Linux 上安装最新版本的 BIRD? | BIRD 中文文档 [DN42] 使用 OSPF ptp 搭建内网与IBGP配置 – Xe_iu's Blog | Xe_iu的杂物间 [译] dn42 多服务器环境中的 iBGP 与 IGP 配置 | liuzhen932 的小窝
2025年07月22日
136 阅读
1 评论
1 点赞
1
2